An Approach to Modified Bedside Percutaneous Tracheostomy During the COVID-19 Pandemic
Background
The COVID-19 pandemic has resulted in a rapid increase in patients requiring
mechanical ventilation. For patients who survive the acute phase of infection,
tracheostomy may prevent long-term sequelae of prolonged endotracheal
intubation, conserve sedative and paralytic medications, and facilitate
endotracheal suctioning, weaning from mechanical ventilation, and cohorting of
patients in a designated weaning unit.
However, the risk of spreading the COVID-19 virus through aerosolizing procedures such as tracheostomy is well documented (1). Standards for safe practice when performing tracheostomy under these circumstances are not yet established.
The authors describe their protocol for the performance of tracheostomy in
COVID-19-infected patients with special attention to procedural technique,
personal protective equipment (PPE), and minimization of participating
personnel. In their experience at a tertiary care, community-based teaching
hospital, their protocol allowed them to perform 10-15 tracheostomies per week
with a small dedicated team in a manner designed to minimize risk to both
patients and healthcare workers under COVID-19 surge conditions.
Setting
The authors perform tracheostomies in an ICU setting, preferably in rooms with
negative pressure capability. Where open spaces have been converted into
COVID-19 units, they use portable HEPA filters. To standardize patient
selection, they formed an institutional advisory team composed of intensive
care specialists, pulmonologists, surgeons, and palliative care consultants for
careful consideration of individualized timing, risks, and benefits.
Patient Selection
The ideal timing of tracheostomy for COVID-19-infected patients remains
undefined. Due to severe hypoxia and lung injury, the authors found that many
patients are not candidates for early tracheostomy (2). The authors recommend
performing the procedure at approximately 2-3 weeks, once the patient has
recovered from the initial cytokine storm, and ventilator parameters have
stabilized and are adequate to perform tracheostomy.
Preparation
The designated team should train in appropriate donning and doffing of PPE.
Each operator dons an N95 mask, head and foot coverings, a powered
air-purifying respirator (PAPR), orthopedic hood, impermeable gown, and two pairs
of gloves (Image 1). The help of an assistant and ample disinfectant wipes
during donning and doffing are recommended according to the CDC guidelines (3).
To minimize donning and doffing, the authors scheduled consecutive
tracheostomies within a single unit to allow performance of successive procedures,
with operators changing only the outer protective gown, hood, and gloves
between procedures.
Prior to initiation of the procedure, the intensivist,
anesthesiologist, and surgeons assess again if the patient will be able to
tolerate ventilator changes during the procedure. After initial set-up and
positioning, the assisting nurse and/or resident is dismissed. The ideal team
includes two attending surgeons (bronchoscopist and primary operator) and a senior
anesthesiologist (equipped with a PAPR). A series of simple visual hand signals
prompt the anesthesiologist to pause and resume ventilation as needed.
Procedural technique
The different techniques of tracheostomy are described elsewhere (4-6). To
reduce risk of contamination and maximize the team’s safety, the authors modified
our technique further as follows:
1. They added PAPR to the standard CDC recommended PPE (3).
2. The ventilator circuit is inspected for leaks or loose connections.
3. If available, disposable bronchoscopes are used.
4. The patient should be paralyzed to mitigate cough and aerosolization during procedure.
5. Once the patient is adequately sedated, paralyzed, and pre-oxygenated, they recommend introducing the bronchoscope into the oropharynx between the vocal cords parallel to the endotracheal tube.
6. With closed suctioning, the endotracheal tube is advanced distally under bronchoscopic guidance with the balloon inflated.
7. Based on anatomical landmarks, the needle is introduced percutaneously into the trachea and the guide wire is then placed, followed by serial dilations.
8. After the last dilation, ventilation is temporarily halted, and only then an 8.0 cuffed Shiley tracheostomy is passed into the lumen while the endotracheal tube is simultaneously withdrawn under bronchoscopic visualization to the level of the tracheostomy. Once the tracheostomy tube is confirmed in place with end tidal CO2, the endotracheal tube is removed.
9. Ventilation is resumed once the tracheotomy tube cuff has been inflated and the tracheostomy is connected to the ventilator.
10. Closed in-line suctioning is recommended to check for hemostasis; therapeutic bronchoscopy with aspiration of the distal airway should be avoided unless absolutely necessary.
11. In the majority of the cases, the side-by-side technique was successfully completed with placement of an 8.0 endotracheal tube. Glottic or vocal cord edema may make passing the scope parallel to the endotracheal tube difficult, in which case a standard percutaneous technique might be employed under apnea or the procedure can be aborted and converted to open at a later time.
Discussion
The authors’ protocol for tracheostomy during the COVID-19 pandemic was
designed to facilitate patient flow from ICU to dedicated weaning units, and
maximize the safety of healthcare workers performing this high-risk airway
procedure. While bedside tracheostomy offers the advantage of eliminating viral
transmission in the operating room or during transport, the traditional
bronchoscopic guided procedure increases the chance of virus aerosolization.
While they speculate that the modified side-by-side bronchoscopic technique reduces
aerosolization, it by no means eliminates it.
Learn more: